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Exercise 7.3.27 Let T : V →W be a linear transforma-
tion, where V and W are finite dimensional.

a. Show that T is one-to-one if and only if there
exists a linear transformation S : W → V with
ST = 1V . [Hint: If {e1, . . . , en} is a basis of
V and T is one-to-one, show that W has a basis
{T (e1), . . . , T (en), fn+1, . . . , fn+k} and use The-
orem 7.1.2 and Theorem 7.1.3.]

b. Show that T is onto if and only if there exists a
linear transformation S : W → V with T S = 1W .
[Hint: Let {e1, . . . , er, . . . , en} be a basis of
V such that {er+1, . . . , en} is a basis of ker T .
Use Theorem 7.2.5, Theorem 7.1.2 and Theo-
rem 7.1.3.]

Exercise 7.3.28 Let S and T be linear transformations
V →W , where dim V = n and dim W = m.

a. Show that ker S = ker T if and only if T = RS

for some isomorphism R : W → W . [Hint: Let
{e1, . . . , er, . . . , en} be a basis of V such that
{er+1, . . . , en} is a basis of ker S = ker T . Use
Theorem 7.2.5 to extend {S(e1), . . . , S(er)} and
{T (e1), . . . , T (er)} to bases of W .]

b. Show that im S = im T if and only if T = SR

for some isomorphism R : V → V . [Hint: Show
that dim (ker S) = dim (ker T ) and choose bases
{e1, . . . , er, . . . , en} and {f1, . . . , fr, . . . , fn} of V

where {er+1, . . . , en} and {fr+1, . . . , fn} are bases
of ker S and ker T , respectively. If 1≤ i≤ r, show
that S(ei) = T (gi) for some gi in V , and prove that
{g1, . . . , gr, fr+1, . . . , fn} is a basis of V .]

Exercise 7.3.29 If T : V →V is a linear transformation
where dim V = n, show that T ST = T for some isomor-
phism S : V →V . [Hint: Let {e1, . . . , er, er+1, . . . , en}
be as in Theorem 7.2.5. Extend {T (e1), . . . , T (er)} to
a basis of V , and use Theorem 7.3.1, Theorem 7.1.2 and
Theorem 7.1.3.]

Exercise 7.3.30 Let A and B denote m×n matrices. In
each case show that (1) and (2) are equivalent.

a. (1) A and B have the same null space. (2) B = PA

for some invertible m×m matrix P.

b. (1) A and B have the same range. (2) B = AQ for
some invertible n×n matrix Q.

[Hint: Use Exercise 7.3.28.]

7.4 A Theorem about Differential Equations

Differential equations are instrumental in solving a variety of problems throughout science, social science,
and engineering. In this brief section, we will see that the set of solutions of a linear differential equation
(with constant coefficients) is a vector space and we will calculate its dimension. The proof is pure linear
algebra, although the applications are primarily in analysis. However, a key result (Lemma 7.4.3 below)
can be applied much more widely.

We denote the derivative of a function f : R→ R by f ′, and f will be called differentiable if it can
be differentiated any number of times. If f is a differentiable function, the nth derivative f (n) of f is the
result of differentiating n times. Thus f (0) = f , f (1) = f ′, f (2) = f (1)′, . . . , and in general f (n+1) = f (n)′

for each n≥ 0. For small values of n these are often written as f , f ′, f ′′, f ′′′, . . . .

If a, b, and c are numbers, the differential equations

f ′′−a f ′−b f = 0 or f ′′′−a f ′′−b f ′− c f = 0

are said to be of second order and third-order, respectively. In general, an equation

f (n)−an−1 f (n−1)−an−2 f (n−2)−·· ·−a2 f (2)−a1 f (1)−a0 f (0) = 0, ai in R (7.3)
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is called a differential equation of order n. We want to describe all solutions of this equation. Of course
a knowledge of calculus is required.

The set F of all functions R→R is a vector space with operations as described in Example 6.1.7. If f

and g are differentiable, we have ( f +g)′ = f ′+g′ and (a f )′ = a f ′ for all a in R. With this it is a routine
matter to verify that the following set is a subspace of F:

Dn = { f : R→ R | f is differentiable and is a solution to (7.3)}
Our sole objective in this section is to prove

Theorem 7.4.1

The space Dn has dimension n.

As will be clear later, the proof of Theorem 7.4.1 requires that we enlarge Dn somewhat and allow our
differentiable functions to take values in the set C of complex numbers. To do this, we must clarify what
it means for a function f : R→ C to be differentiable. For each real number x write f (x) in terms of its
real and imaginary parts fr(x) and fi(x):

f (x) = fr(x)+ i fi(x)

This produces new functions fr : R → R and fi : R → R, called the real and imaginary parts of f ,
respectively. We say that f is differentiable if both fr and fi are differentiable (as real functions), and we
define the derivative f ′ of f by

f ′ = f ′r + i f ′i (7.4)

We refer to this frequently in what follows.4

With this, write D∞ for the set of all differentiable complex valued functions f : R→ C . This is a
complex vector space using pointwise addition (see Example 6.1.7), and the following scalar multiplica-
tion: For any w in C and f in D∞, we define w f : R→ C by (w f )(x) = w f (x) for all x in R. We will be
working in D∞ for the rest of this section. In particular, consider the following complex subspace of D∞:

D∗n = { f : R→ C | f is a solution to (7.3)}
Clearly, Dn ⊆ D∗n, and our interest in D∗n comes from

Lemma 7.4.1

If dimC(D
∗
n) = n, then dimR(Dn) = n.

Proof. Observe first that if dimC(D
∗
n) = n, then dimR(D

∗
n) = 2n. [In fact, if {g1, . . . , gn} is a C-basis of

D∗n then {g1, . . . , gn, ig1, . . . , ign} is a R-basis of D∗n]. Now observe that the set Dn×Dn of all ordered
pairs ( f , g) with f and g in Dn is a real vector space with componentwise operations. Define

θ : D∗n→ Dn×Dn given by θ( f ) = ( fr, fi) for f in D∗n
4Write |w| for the absolute value of any complex number w. As for functions R→R, we say that limt→0 f (t) = w if, for all

ε > 0 there exists δ > 0 such that | f (t)−w| <∈ whenever |t| < δ . (Note that t represents a real number here.) In particular,
given a real number x, we define the derivative f ′ of a function f : R→ C by f ′(x) = limt→0

{
1
t
[ f (x+ t)− f (x)]

}
and we say

that f is differentiable if f ′(x) exists for all x in R. Then we can prove that f is differentiable if and only if both fr and fi are
differentiable, and that f ′ = f ′r + i f ′i in this case.
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One verifies that θ is onto and one-to-one, and it is R-linear because f → fr and f → fi are both R-linear.
Hence D∗n ∼= Dn×Dn as R-spaces. Since dimR(D

∗
n) is finite, it follows that dimR(Dn) is finite, and we

have
2 dimR(Dn) = dimR(Dn×Dn) = dimR(D

∗
n) = 2n

Hence dimR(Dn) = n, as required.

It follows that to prove Theorem 7.4.1 it suffices to show that dimC(D
∗
n) = n.

There is one function that arises frequently in any discussion of differential equations. Given a complex
number w = a+ ib (where a and b are real), we have ew = ea(cosb+ isinb). The law of exponents,
ewev = ew+v for all w, v in C is easily verified using the formulas for sin(b+b1) and cos(b+b1). If x is a
variable and w = a+ ib is a complex number, define the exponential function ewx by

ewx = eax(cosbx+ isinbx)

Hence ewx is differentiable because its real and imaginary parts are differentiable for all x. Moreover, the
following can be proved using (7.4):

(ewx)′ = wewx

In addition, (7.4) gives the product rule for differentiation:

If f and g are in D∞, then ( f g)′ = f ′g+ f g′

We omit the verifications.

To prove that dimC(D
∗
n) = n, two preliminary results are required. Here is the first.

Lemma 7.4.2

Given f in D∞ and w in C, there exists g in D∞ such that g′−wg = f .

Proof. Define p(x) = f (x)e−wx. Then p is differentiable, whence pr and pi are both differentiable, hence
continuous, and so both have antiderivatives, say pr = q′r and pi = q′i. Then the function q = qr + iqi is in
D∞, and q′ = p by (7.4). Finally define g(x) = q(x)ewx. Then

g′ = q′ewx +qwewx = pewx +w(qewx) = f +wg

by the product rule, as required.

The second preliminary result is important in its own right.

Lemma 7.4.3: Kernel Lemma

Let V be a vector space, and let S and T be linear operators V →V . If S is onto and both ker (S)
and ker (T ) are finite dimensional, then ker (T S) is also finite dimensional and
dim [ker (TS)] = dim [ker (T )]+ dim [ker (S)].

Proof. Let {u1, u2, . . . , um} be a basis of ker (T ) and let {v1, v2, . . . , vn} be a basis of ker (S). Since S

is onto, let ui = S(wi) for some wi in V . It suffices to show that

B = {w1, w2, . . . , wm, v1, v2, . . . , vn}
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is a basis of ker (T S). Note B⊆ ker (T S) because T S(wi) = T (ui) = 0 for each i and T S(v j) = T (0) = 0

for each j.

Spanning. If v is in ker (T S), then S(v) is in ker (T ), say S(v) = ∑riui = ∑riS (wi) = S (∑riwi). It follows
that v−∑riwi is in ker (S) = span{v1, v2, . . . , vn}, proving that v is in span (B).

Independence. Let ∑riwi +∑ t jv j = 0. Applying S, and noting that S(v j) = 0 for each j, yields
0 = ∑riS(wi) = ∑riui. Hence ri = 0 for each i, and so ∑ t jv j = 0. This implies that each t j = 0, and so
proves the independence of B.

Proof of Theorem 7.4.1. By Lemma 7.4.1, it suffices to prove that dimC(D
∗
n) = n. This holds for n = 1

because the proof of Theorem 3.5.1 goes through to show that D∗1 =Cea0x. Hence we proceed by induction
on n. With an eye on equation (7.3), consider the polynomial

p(t) = tn−an−1tn−1−an−2tn−2−·· ·−a2t2−a1t−a0

(called the characteristic polynomial of equation (7.3)). Now define a map D : D∞→ D∞ by D( f ) = f ′

for all f in D∞. Then D is a linear operator, whence p(D) : D∞→ D∞ is also a linear operator. Moreover,
since Dk( f ) = f (k) for each k ≥ 0, equation (7.3) takes the form p(D)( f ) = 0. In other words,

D∗n = ker [p(D)]

By the fundamental theorem of algebra,5 let w be a complex root of p(t), so that p(t)= q(t)(t−w) for some
complex polynomial q(t) of degree n−1. It follows that p(D) = q(D)(D−w1D∞

). Moreover D−w1D∞
is

onto by Lemma 7.4.2, dimC[ker (D−w1D∞)] = 1 by the case n = 1 above, and dimC(ker [q(D)]) = n−1
by induction. Hence Lemma 7.4.3 shows that ker [P(D)] is also finite dimensional and

dimC(ker [p(D)]) = dimC(ker [q(D)])+ dimC(ker [D−w1D∞]) = (n−1)+1 = n.

Since D∗n = ker [p(D)], this completes the induction, and so proves Theorem 7.4.1.

7.5 More on Linear Recurrences6

In Section 3.4 we used diagonalization to study linear recurrences, and gave several examples. We now
apply the theory of vector spaces and linear transformations to study the problem in more generality.

Consider the linear recurrence

xn+2 = 6xn− xn+1 for n≥ 0

If the initial values x0 and x1 are prescribed, this gives a sequence of numbers. For example, if x0 = 1 and
x1 = 1 the sequence continues

x2 = 5, x3 = 1, x4 = 29, x5 =−23, x6 = 197, . . .

5This is the reason for allowing our solutions to (7.3) to be complex valued.
6This section requires only Sections 7.1-7.3.


